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1. Introduction

Let & and % be polyhedra; that is, closed polyhedral
convex sets, bounded or not, in R® . Our interest is in computing
the smallest nonnegative scale s& of 2 for which some translate
s +t contains ¥ , or equivalently, of computing the largest
nonnegative scale 8% of & for which some translate s& + t is

contained in & .

s¥y




For certain descriptions of & and % we observe that this problem;

namely, the circumscription program

z, = infimum: s
8s,t
Pl
subject to: ¥ CsA + ¢t 820

or equivalently, the inscription program

32 = supremum: S
.’t
P2

subject to: s¥ +tC & s>0

is a linear program.

That an n-sphere of maximum radius in a polyhedron can be
found by linear programming has been in the folklore for over a
decade and has been used in a variety of applications. Perhaps our

observations will be of use as well. 1
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2. Preliminaries
To avoid trivialities we assume throughout that & and ¥

contain at least one and two points, respectively.
@& and g can be described as the intersection of finitely

many hyperplanes

a'-(xexn:nga} 9-{xel°:k5b} ;

in which case we say that & and & have representation H .

Alternatively, & and 4% can be described as a weighting of points

and rays

X={xeR* :x=X\+Uu, eA =1, A 20, w > 0} ' |

Y= (xeR" : x=Yu+Vr, ep=1, u 20, 7 >0}

where e = (1, 1, ... 1) 1in which case we say @& and & have
representation W .

Given a representation one can systematically convert it to
the other; however, we shall suppose, and typically rightly so, that
the computational burden of this conversion is prohibitive.

Using the representation W we see that any polyhedron @&

can be expressed as K + C where K is a compact polyhedron and C

is the polyhedron of rays of & . For any positive scale s we

o<




s

have sd& = sK + sC = gK + C, and, of course, for a zero scale s
we have s = {0} . Thus the set sQ is continuous in s .for
positive s, and is continuous in nomnegative s if and only if C
contains only the origin.

Given & the come of rays C 1is unique and we write
C=cone . By tngQ we mean the smallest subspace of R®
that contains a translate of & .

The next lemmas describe the sense in which Pl and P2 are

equivalent.
Lemma 1 (Principal Equivalence): If (sl, tl) is feasible
or optimal for Pl and 8, is positive, then (sz, tz) = (llsl, —tllsl)

is feasible or optimal, respectively, for P2, and vice versa. B

Lemma 2 (Feasibility): Pl is feasible if and only if cone®

X

C coned and tng C tng2” . P2 1is always feasible.

Lemma 3 (Attainment): The following are equivalent.

1) 0<zl<+- ii) Pl has an optimum

ii1) 0 < z2y) <t iv) P2 has an optimum . =®




Lemma 4 (Non-attainment): The following are equivalent:

i) 21-0

i1) 2, =+

11i) ¥+ t C cone” for some t

The possible discontinuity of s@ '+t at s =0

accounts for the incomplete equivalence between Pl and

P2
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3. Results

In this section we formulate the circumscription and inscription
problems Pl and P2 for three cases of representation; namely,
HH, WW, and HW, where, for example, HW refers to 2 and @ having
representations H and W, respectively.

In each case & more general problem is treated first. We

generalize Pl and P2 to

infimum: ¢6
P3 0
subject to: ¥C &(6) ee@
and
supremum: b
P4 ?
subject to: ®(8) C & 06

where @ 1is a polyhedron in Rk and c8 is a linear function of 6

in @ that measures some feature of the polyhedrons. We regain Pl

and P2 from P3 and P4 by setting 6 = (s,t), etc.

Case HH

Let &(6) be the set {x : A(0)x < a(8)} where (A,a) is
an affine function of 6 in 6 and let ¥ = {x : Bx < b} . The
program P3 is seen to be, using an alternative theorem, the linear

program
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minimize: c6
e EY A

PS5 subject to: AB = A(6) _Ab < a(8)

A>20 ee ®

Observing that s+ t = {x : Ax < sa+ At} for s >0 and

specializing P5 to solve Pl we obtain the linear program

z, = minimize: s
1 s,t,A
P6 subject to: AB = A Ab < as + At

A>0 s2>0

Case WW

Let @&(8) be the set {Y(8)u + V(8)T : ep =1, p >0, v > 0}
where (Y,V) is anaffine function of 6 in @ and let & be the
set {XA +Uv : ex =1, A >0, w > 0} . The program P4 is the

linear program

maximiﬁe: c
8,4A,4,
subject to: Y(8) = XA + UQ el = e
P7
v(e) = UN 0ed
A>0 Q20 >0

Specializing P7 to solve P2 we obtain the linear program

U U ———
b T B T AT R e e



ISR —

subject to:

toe + sY = XA + UQ el = e
P8
sV = Ul 82>0

where o denotes outer product. In solving P8 one first verifies
that V=0 with @I > 0 has a solution, and then drops the constraints
sV=Ul and T >0.

Case KW

e |

We treat the case HW twice as le and sz

the circumscription/inscription problems through P3 and P4, respectively.

where we approach

Let 2(0) = {x : A(8) x < a(6)} where (A,a) is an affine function of
6 in @ and let ¥ ={Yu+Vr:eu=1, u>0, m>0}. The program

P3 4is the linear program

miné.mize t b

P9 { subject to: A(8)Y < a(8)oe

A(B)V<O 0ef

Specializing P9 to solve Pl we obtain the linear program




[ z4 = minimize: s
s,t

P10 subject to: AY < sace + A(toe)

AV <0 s>0

In solving P10 one verifies AV < 0 and then drops the constraints

AV <0.

Case lmz
Let %(0) be the set {Y(8)mu +'V(e)1r tep=1,u>0, v >0}
where (Y,V) is an affine function of 6 in O aud Jr is the set

{x : Ax < a} . Then the program P4 is the linear program

maximize: cé
0

P11l { subject to: AY(8) <

A
(]
o
o

AV(8) <

A
o
@
m

@

Specializing Pll to solve P2 we obtain the linear program

z2 = maximize: s
s,t

P12 subject to: A(sY + toe) < a

sAV < 0 s>0

In solving P12 one verifies AV < 0 and then drops the constraints
8AV < 0 . Observe that Pll remains a linear program if a also is

an affine functionof © in @ .




4. Related Problems
The forgoing raises the question as to whether the following
problems can be solved as linear programs.

a) Case WH

b) Finding the largest & in g or smallest Q containing %

where rotations as well as scales and translations are permitted.
c) Finding the largest n-sphere & in @& where g has
representation W .
d) Finding the smallest n-sphere @ containing % where ¥
has representation H or W.
We suspect, but have no comprehensive proofs, that none of
these problems can be formulated as a linear program. Observe in a)
that for fixed (X,U,B,b) Case WH can be formulated as a linear
program by converting to one of the other cases; in b) the set of
optimal % may not be a convex set; and in d) the n-sphere may

have an irrational radius given rational data.

10
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